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NIST Reference Platform

• Open API Reference Implementation
• Sample DASE Applications
• API Unit Tests
• Tools
• STB Platforms

– NIST STB Simulation
– Real-time systems
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Why a Reference Implementation?

• Proof of Concept
– detect inconsistencies and holes in API
– “benchmark” implementation

• Conformance Testing
– test against an implementation

• Application Development & Testing
– accelerate application development process
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Benefits of a NIST RI 

• Neutral, 3rd party
– no bias
– no preconceived notions

• Prototype Source Code
– public domain
– basis for an implementation
– component placeholders (modular)
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Reference Platform Scope (I)

• DASE Reference Implementation
– What we are Doing:

• DASE Java APIs (java.tv, atsc, davic, havi)
• Application Management

– What we are NOT Doing (potential follow on):
• Presentation Engine
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Reference Platform Scope (II)

• Set-top Box environment
– Simulation

• Java simulation

– Real-time Emulation
• Targeted to begin in the Fall/2000

– Commercial Receivers
• Will work with manufacturers in a collaborative 

effort
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API Implementation Design Goals
• Portable, Semantic Clarity

– Java implementation
– Intermediate software layer between API 

implementation and STB environment
– no native code
– initially low priority given to performance and 

system constraint issues
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Reference Platform Design Stack

API Implementation

Hardware Abstraction Layer

Set-top Box Simulation

pJava

ATSC/MPEG DATA

data flow
method call
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Hardware Abstract Layer
• intermediate software layer between API 

implementation and STB environment
• portable layer
• common interface that abstracts lower layer
• transform low level data to high level 

objects
– ATSC table data             high-level objects
– merges ATSC tables
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Reference Platform Architecture
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Data Flow Example

DASE Application Objects

API Java Objects

HAL Java Objects

Simulation Java Objects

decode raw virtual channel

getATSCVirtualChannelTable()

getHALVirtualChannel()

getService()

map raw virtual channel

data flow

ATSC/MPEG Data
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Current Status

• API Packages
– Service, Navigation, Guide
– Locator, SI 
– Application, X-let
– User, Registry, Preferences
– Media, Graphics

STB Simulation
Hardware Abstract

API Implementation
Applications

Progress 100%
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Sample Applications

• Native EPG
– SI Database access
– User’s Preferences

• Downloadable X-lets
– SI Database access
– Application Management
– Media 

• Demonstrations at reception tonight
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Electronic Program Guide
• native EPG application
• SI Database APIs
• user preferences APIs
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EPG X-let
• downloadable provider specific EPG
• auto-start application, shared
• EPG appears on-screen if present in bitstream
• SI Database APIs (VCT, EIT)
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EPG X-let
• additional ATSC/MPEG tables provide 

more in-depth information on programs
• SI Database APIs (VCT, EIT, ETT, RRT)
• asynchronous data retrieval
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Buyme X-let
• implements X-let and 

MediaTimeEventListener interfaces
• auto-start X-let injected into 

simulation
• Application Manager detects the    

X-let and starts it
• registers to receive media time event
• X-let appears at requested time
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Baseball Statistics X-let
• user-start application
• viewer activates X-let, Application Manager starts it
• statistics appears as long as X-let is present in the bitstream
• X-let disappears when no longer present in bitstream or 

stopped by the viewer
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Going Forward

• Complete prototype API implementation
– adjust to changes in specification
– build lower-level infrastructure 

• possibly expand role to other components
• Port to other STB environments

– real-time emulation
– commercial receivers
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NIST Reference Platform Resources

• Reference Implementation Source Code
• STB Simulation Platform Source Code
• Sample Applications
• Unit Tests
• Tools
• JavaDoc
• Documentation
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Availability

• Free and available to anyone

• www.dase.nist.gov
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Reference Platform Architecture
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NIST Settop Box Simulation

Wayne Salamon
<wsalamon@nist.gov>

May 23, 2000
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Overview

• The need for the STB simulation
• Simulation design
• Simulation components
• Data flow from simulation to API
• Java class code reuse
• Executing native applications and Xlets
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The Need for an STB Simulation

• DASE API retrieves info from underlying 
system

• Simulate successful as well as error 
scenarios

• Maintain state of users and preferences 
across API test runs

• Used to test Xlets
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Simulation Design

• Independent of the API and HWAbstract 
classes

• Implementation based on API requirements
• Performs data management, not information 

management
– For example, applies no semantic meaning to 

the contents of the PSIP tables
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Simulation Design (cont.)

• Maintains the table consistency and will not 
return a partially completed table

• Extracts modules from the Data Carousel 
but doesn’t interpret the data
– For example, Xlet classes and data are 

maintained as arrays of bytes
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Simulation Components

• Small C program for initialization, 
remainder in Java

• ATSC and MPEG table processing and 
management

• Data carousel module processing
• Other data managers: user, preferences, etc.
• STB state: Power status, resource 

availability, etc.
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Data Flow Example

• Example of how the Virtual Channel Table 
is extracted by the simulation and presented 
to the HWAbstract layer

• Trace the class interactions needed to 
provide this data

• All other tables are handled in a similar 
manner
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ATSCByteStreamParser

PrivateSectionParser ATSCInputStream

ATSCVirtualChannelTableManager

Private
Section

ATSCVirtualChannel

Extracting Virtual Channels
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HWAbstract Channel Retrieval

DataManager

VirtualChannelTable HWAbstract

Simulation
ATSCVirtualChannelTableManager

ATSCVirtualChannel[]
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Reuse of the Java classes

• Parsing is separated from table management
• The Huffman decoding is done by a 

separate utility class which is used by the 
parser classes

• Carousel module processing is an important 
function and the classes in the simulation 
can be reused for S13 protocol handling
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Executing a Native Application

• Native applications have access to the 
DASE API and public methods of the 
HWAbstract classes

• Can be executed from the simulation 
command line or another native application

• Classes must be found in the CLASSPATH 
or the STBSIMCLASSPATH
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Running an Xlet

• Xlets can be executed from the simulation 
command line or injected through the data 
stream

• Injected Xlets are either auto-started or 
user-started

• Xlets can be controlled with the Application 
Selection program
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Conclusion
• STB Simulation is not dependent on the 

API implementation
• Forms the basis of a Xlet development 

environment
• Portable: Runs on multiple platforms
• Many of the STB classes can be reused
• Will be included in the NIST Reference 

Platform distributed via the Web site 
www.dase.nist.gov


